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Abstract. Direct simulations of solidification processes that account for all space and time scales are often beyond the reach of current computational power. To overcome this limitation micro-macro approaches that incorporate the effects of small scale phenomena into large scale process models have been developed. An important small scale solidification phenomenon is microsegregation —the redistribution of rejected solute components at the scale of the solid crystal morphology. This paper outlines a general microsegregation model that not only accounts for many of the critical small scale phenomena in alloy solidification but is also well suited as the micro component of a micro-macro model of metal casting. In the development of this microsegregation model, particular emphasis and testing is placed on alternative treatments of modeling the micro-scale solute diffusion in the solid phase—the so called “back-diffusion.” 

Introduction

The dramatic increase of computer power over the last decade or so has opened the door for extremely sophisticated materials processing models. This new found modeling power however, has been offset by the realization that complete process models require an accounting of a very wide range of space and time scales. In the ideal world, models should be based on direct simulations that account for all the space and time scales. In most systems however, currently available computer power is woefully inadequate for this task. Further, for some systems, assuming a doubling of computer power every 18 months (Moore’s law), it will be on the order of 100 years before computer power catches up with the requirements of a direct simulation [1].  This has led to significant efforts in the development of computational techniques that can bridge across scales and enable macroscopic process models to take account of relevant microscopic phenomena. In the metals literature these approaches are referred to as micro-macro models; a term first coined by Rappaz and co-workers to describe models of grain growth in equiaxed dendritic alloys [2].  The concept in a micro-macro model is to employ micro-scale domains that capture the “average” behavior of small scale phenomena in a manner that can be directly used in macroscopic models of larger scale heat and mass transfer processes. In metal solidification, an important microscopic phenomenon is the redistribution of solute components at the scale of the solid crystal morphology—so called “microsegregation”. This phenomenon is tightly coupled to macro-scale heat and mass transfer processes and, as such, a micro-macro model of a metal solidification needs to employ appropriate micro-scale models of microsegregation phenomena.  

The central topic of this paper is the development and presentation of a microsegregation model that is suitable for use in a micro-macro model of a metal solidification processes. This model, developed from recent work [3,4], can be used as stand alone model but can also be integrated into a micro-macro solidification model. The model can operate with multi-component systems and account for morphological changes (coarsening) in the solid liquid mushy region. A key feature in this model is the treatment of the back-diffusion of solute into the solid phase during primary solidification. The novel contribution of this paper is the presentation and testing of alternative schemes for approximating the back diffusion.
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Figure 1: Arm space domain and associated REV 

Model Development

In recent work Voller [3] identified a list of attributes that need to be accounted for in the development of a comprehensive microsegregation model. These attributes include
1. The ability to interface with a general macro-scale solidification model.

2. The capability to deal with multi-component alloy systems.

3. A treatment—at least during primary solidification—of the solid state solute diffusion—so called “back diffusion.” 

4. An accounting of the morphology changes during solidification.

5. When operated as a stand alone model, the flexibility to deal with situations controlled by both prescribed cooling and prescribed solid growth.

This list provides an excellent metric to guide the development of microsegregation models.

Interface with Macro-scale Solidification Models
Microsegregation is a small scale phenomena occurring at the scale of the solid-liquid interface in the dendritic solid-liquid mushy region of a metal alloy casting. Coupling between a microsegregation model and a larger scale macro scale heat and mass transfer solidification model is achieved through choice of model domains. An appropriate domain for a microsegregation model is a fixed one-dimensional region, 
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, representing  half of a dendrite secondary arm space, see Fig. 1. In a typical alloy system ~ 100 m. The model half-arm space is located in a larger domain of the mushy region—the Representative Elementary Volume (REV)—which has a scale of ~10 mm and contain a number of primary dendrite arms or grains. The extent of solidification in the REV is measured by its solid volume fraction, g.  Conditions in the half-arm space are connected to conditions in the macro REV on making the following assumptions.
1. The solid fraction of the half-arm space is equal to the solid fraction of the REV.

2. Transport processes in the liquid are sufficiently large to assume that alloy solute concentrations in the liquid portion of the half-arm space are uniform.

3. Thermal transport is rapid so that the temperature is uniform throughout the half-arm space.

4. REV mixture values of enthalpy and solute can be calculated by considering the conditions in the secondary arm space.
In more sophisticated models, the assumption on the nature of the relationship between the REV and the arm space can be relaxed. For example, Wang and Beckerman [5] account for finite mass diffusion of solute in the liquid phase of the REV by introducing an intermediate length scale—the primary dendrite envelope—to bridge between the scales of the REV and the secondary arm space. Under the basic assumptions listed above, however, the REV mixture values of enthalpy and solute can be calculated as

Mixture Enthalpy:
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and Mixture Solute (one for each component):
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where H is the enthalpy, C is the solute concentration,  is the density, T is temperature, H is the latent heat of fusion, c is a specific heat term and the subscripts “s” and “l” refer to the solid and liquid states respectively. In the general case, the specific heat term is a function of both solute concentrations and temperature and the latent heat term a function of the solute concentrations.
Coupling between a microsegregation model and a macro-scale heat and mass solidification model is made by associating the REV with an “element” of a macro-scale numerical discretization. In this way, values on the left-hand-sides of Eqs. (1) and (2) can be considered to be nodal values in the macro-scale model, whereas values on the right-hand sides are associated with the microscopic scale of the representative half-arm space. The objective of the microsegregation model is to, via consideration of the microsegregation phenomena in the arm space, use Eqs. (1) and (2) to “break-out” values for the alloy solute concentrations, REV temperature and REV solid fraction from nodal macro-scale field values of mixture enthalpy and mixture solute. 
Accounting for Multi Component Alloys
Accounting for multi component alloys (k=1,2,..,n) in a microsegregation model requires an accurate treatment of the phase diagram. In a metal casting, the equilibrium temperature and the liquid concentrations Ck are related via the liquidus surface of the phase diagram
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and when the primary phase is forming  the solid  and liquid concentrations of a given component  at the solid-liquid interface are related through a partition coefficient i.e.,
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where, in the general case, the partition coefficient k can be a function of the equilibrium temperature and solute concentrations. In relatively simple systems, a geometric model of the liquidus surface can be used to approximate Eq. (3). Alternatively, a thermodynamics calculation package could be used, e.g., the SLOPE routine in CALPHAD described by Boettinger et al. [6]. When secondary phases form (e.g., a eutectic), the thermodynamic treatment needs to be modified to account for the additional dependencies between the solute components; examples of binary and ternary eutectic treatments are discussed in detail by Voller [4]. 

Use of phase-diagram relationships requires values of the liquid solute concentrations which can be obtained from modeling the microsegregation in the arm-space. The proposed microsegregation model splits the time domain into small steps 
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 and assumes that current and previous macro-scale values of mixture enthalpy Eq. (1) and mixture concentration Eq. (2) are available at each time step. Then, for each component k, the following temporal mass balance can be constructed
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where the superscript “old” refers to values at the start of the simulation time step and the value 
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 accounts for changes in the liquid concentration  of solute component k due to macro-scale transport (macrosegregation). Progress is made by treating the liquid fraction at the start of a time step, i.e., (1-gold), as a new liquid phase alloy with solute concentrations given by
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. Then over the time step, t, the small fraction of solid that forms, (g – gold), is assumed to solidify with the uniform compositions    
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, resulting in the following balance equation for each component
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The term Q on the right of Eq. (6)—accounting for the diffusion of solute into the preexisting solid fraction gold—is referred to as the back diffusion and is calculated as
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where D is the diffusion coefficient for the solute in the solid and the solute gradient is evaluated at x = g; recall  is the length of the half-arm space.

With the above equations in place and a suitable approximation of the back-diffusion an iterative microsegregation model operating in each time step can be constructed (see [4] for full details)
· From the given values of  [C]k values of  
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 are calculated from Eq. (5)
· For the current iterative value of temperature Tr, the mixture enthalpy Eq. (1) is used to obtain a value of the solid fraction gr. Note: (i) the superscript “r” is an iteration counter, (ii) initial iterative settings (r = 0) are previous time step values, i.e., T0 = Told, and (iii) calculating g from the mixture enthalpy Eq. (1) may require under-relaxation [4].

· Use of the current iterative value of solid fraction in Eq. (6) will lead to, for each solute component, an estimate of the liquid concentration
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. At this point, if required, accounting of secondary solidification phases can be made. For example, in a simple ternary eutectic, if the estimated value of the liquid concentration crosses a binary eutectic trough it is reset to fall on the trough [4].
· The values of the liquid concentrations can be used in the phase diagram information, Eq. (3), to obtain an estimate of the equilibrium temperature. This value, corrected for undercoolings if required, provides the updated temperature Tr+1 used to seed to next iteration sweep.    

Iterations conclude when the value 
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 falls below a given tolerance. A key feature of this microsegregation treatment is its local nature; calculations only depend on values of [C]k  and  [H] from a single node point of the macro-scale calculation. 

Treatment of Back-Diffusion
During primary solidification the distribution of a solute component in the arm space will have the form schematically shown in Fig. 1. The positive gradient of the solute in the solid fraction of the half-arm space domain will result in a diffusion transport away from the solid-liquid interface into the primary solid phase. This diffusion, which can be calculated from Eq. (7), is referred to as back-diffusion and it needs to be accounted for in a microsegregation treatment. On identification of the time required to solidify the arm space, tf, the back-diffusion term in Eq. (7) can be written as 
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where 
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 is a diffusion Fourier number and time and space scales are normalized as  
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 respectively. A complete back-diffusion treatment can be developed from a numerical solution, e.g., a finite-difference solution of the governing transient species diffusion equations [7]. Although codes for such solutions, available on the web [8], are useful for benchmarking approximate solutions they can not be easily adapted to work with the proposed microsegregation model outlined in the previous section. On the other hand approximate treatments of back-diffusion can readily be used to evaluate the terms in Eq. (8).  The main aim of this work is to suggest and test two alternative approximate models for the back diffusion term in Eq. (8).

The Profile Model: The starting step of the profile model is to assume, for each component, a solid solute profile 
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where the exponent m > 1. The value of a, which could be a function of time, is found by solving the simultaneous equations
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Then using Eq. (9) in Eq. (8) the back-diffusion term in Eq. (6) can be calculated as  
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(11)
matching the back-diffusion form suggested by Wang and Beckermann [9]. Previous applications of this model assigned a constant value for m ~ 2. In the approach presented here, however, a constant setting of m is not required. Since the solute gradient will increase with increasing solid growth Voller [3] has suggested a time variable form for the exponent m. The version used here, selected in a somewhat ad-hoc fashion to match benchmark analytical predictions [10], is
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The Parameter Model.  In the parameter model the back-diffusion term in Eq. (6) can be written as 
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where  is the back-diffusion parameter. A finite difference in time results in the approximate back-diffusion model 
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which can be readily employed in the microsegregation balance of Eq. (6). The key to using this back-diffusion model is the determination of a reasonable approximation of the parameter Following Voller [11], an exact expression for this parameter is   
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where is an integration factor. Use of this expression requires suitable approximations of the integration factor and the product
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. In the specific case of prescribed parabolic solid growth, g = and
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where through a fit with the analytical solution for parabolic solid growth in a binary alloy[10], Voller [11] suggests the ad-hoc approximation
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for evaluation of the integration factor. 

In the case of a prescribed constant cooling rate—a condition that more closely matches conditions in conventional castings—Voller [12], through the application of a weighted average for the solute balance, has shown that a reasonable approximation for Eq. (15) is      
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 which matches a back-diffusion model initially derived by Ohnaka [13].   
The modeling advantage of the paramter back-diffusion model is that the range of back-diffusion from lever rule of complete diffusion in the solid (
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) through to the Gulliver-Scheil assumption of zero solid diffusion ( = 0) can be captured by the parameter range 
[image: image33.wmf]1

0

£

b

£

; an attribute of the parameter model first suggested by Clyne and Kurz [14]. 
Morphological Changes

The microsegregation model is developed assuming a fixed domain. In reality the arm-spaces in the REV would be expected to increase in size (coarsen) as solidification proceeds. The importance of coarsening in microsegregation modeling was first recognized by Roosz and co-workers [15]. An accepted model for the coarsening of the secondary arm space is [16]
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where the exponent n ~ 1/3 and   is the half-arm space on complete solidification, the fixed domain size used in the microsegregation model development presented above. Although it is possible to directly incorporate the model Eq. (19) into microsegregation treatments (e.g., the full numerical models on the web sit at [8]) approximate coarsening treatments have been shown to work surprisingly well.  Working from the observation that coarsening dilutes the solute concentrations in the liquid potion of the arm space Voller and Beckermann [17] have shown that the effect of coarsening can be handled by employing an enhanced diffusion, characterized by the variable solute diffusion Fourier number
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where m is the exponent in the solid solute profile of Eq. (9). Assuming that the solid growth in the REV is close to parabolic the modified Fourier number can be estimated as
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When this model is used with the profile back-diffusion model a variable exponent m is calculated with Eq. (12). If the parameter back-diffusion model is used a constant value of m = 2.33 is used.   
Performance

Although the microsegregation model developed here has been designed to operate as part of a micro-macro solidification model its verification and validation can be carried out by considering its operation is a “stand alone mode” where pre-defined macro-scale information, proxies, for the mixture solute and enthalpy are prescribed. Following the testing presented in [3] the test model used involves the solidification of a binary alloy with an initial composition of C0 = 1 and the assumption of a constant density. Solidification is assumed to occur under closed conditions, i.e., there is no macro-segregation and the composition in the arm space remains fixed at [C] = C0. These assumptions are limited but sufficient to fully test local micro-scale components of the proposed microsegregation model, i.e., the back diffusion treatments and coarsening.  Under the assumed conditions Eq. (5) reduces to 
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In running the resulting microsegregation two limit cases are considered in which global conditions are imposed on the micro-segregation domain.  
Parabolic Growth: In this case the solid fraction is calculated as g=andcoarsening is not considered. At each time step the segregation ratio kCl/C0 is calculated. Calculations terminate when gs = 1. Calculations are driven by increasing the solid fraction with equal increments (10000 increments are used in the reported results) and then calculating the time step as
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. With the external prescription of the solid fraction Eq. (22) can be directly solved for the current liquid fraction Cl. The parameter back-diffusion model (14), supplemented with the parameter definitions in Eqs. (16-17), can be directly incorporated into this solution.  If the profile back-diffusion model Eq. (11) is used the value of Q is calculated using previous time values and the initial time value is set to Q = 0. Fig. 2 shows segregation ratio predictions for parabolic growth with the settings 
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 = 0.13 and  = 0.4, conditions that correspond to the segregation of phosphorus in -Fe. Results for the profile back-diffusion mode with a variable m set by Eq. (12), and the parameter back-diffusion model are compared with predictions from a full numerical solution [7,8]; a solution that has been verified to closely match the available analytical solution presented by Kobayashi [10]. A semi-log plot is used to emphasis the performance of the various models at very low liquid fractions. From these results it is clear that both back-diffusion models are able to sustain high fidelity results at low liquid fractions. This result has a lot to do with the use of the variable m and choice for the parameter . As recorded in Fig. 2, the use of a constant m value in the profile model Eq. (11) (e.g., m = 2) results in a significant over-prediction of the segregation ratio at low liquid fraction. At the same time the use of the simple approximation for  given in Eq. (18) results, at low liquid fractions, in an under-prediction by the parameter model Eq. (14) for the segregation ratio. The sound performance of the profile model with variable m and the parameter model defined by Eqs. (16) and (17) is confirmed across a wide range of physical parameters by comparing model predictions of the segregation ratio on complete solidification (g = 1) with the analytical solution values reported by Kobayashi [10], see Fig. 3. In these results the model values are calculated via extrapolation through the last two predicted segregation ratios at g = 0.998 and g 0.999. 
Constant Cooling: In this case at each time step the liquid concentration is incremented by a fixed amount, C1 (200 steps).  If a straight liquidus line is assumed this step increase is equivalent to a constant cooling rate. The prescription of the current liquid solute concentration in Eq. (22) results in a prediction of the current solid fraction. Calculations terminate when Cl = 5, which is considered to be a eutectic composition.  At this point  = 1 and the liquid fraction value (1 - g) is regarded as the eutectic fraction. Eutectic fractions for a fixed value of partition ratio and a range of  values—with and without coarsening are predicted with the proposed models—profile Eqs. (11) and (12) and parameter Eqs. (14) and (18). Coarsening is based on the Fourier enhancement in Eq. (21) with a setting of n = 1/3.  Both the profile and the parameter back-diffusion models are calculated using previous time values. In practice it is found that at early steps negative values of Q can be calculated, in such cases the setting of Q = 0 is made. Predictions of the eutectic fractions, with and without coarsening, for the selected value  = 0.1 and  are compared with predictions from a verified and validated numerical model [7,8] in Fig. 4. These results clearly show a sound performance from both the profile and the parameter back-diffusion models. The results also indicate a good performance from the approximate model of coarsening in Eq. (21).     
[image: image41.wmf]Figure 2: Predictions of segregation ratio of phosphorous in -Fe
Discussion 
The above performance tests successfully close the development of a microsegregation model suitable for use in a micro-macro multi-component solidification model. The key modeling step is the association between the half-arm dendrite domain of the microsegregation calculation and an REV at the scale of an element in a numerical solution of macroscopic heat and mass transport equations.  The heart of the model is the iterations based around the solute balance in Eq. (6). The model is closed by the specification of arm space coarsening and a back-diffusion term representing the diffusion of solute into the solid phase of the arm space. This closure requires that a number of model choices be made.  Coarsening is well modeled by enhancing the solute Fourier number via the expression provided in Eq. (21). Back diffusion can be modeled by two alternative approaches. The first, based on the assumed power profile for the solute in the solid phase in Eq. (9),  leads to the profile model in Eqs. (11-12). The second is based on the calculation of a parameter  relating the back-diffusion to the rate of change of the solute concentration in the liquid phase of the arm-space domain. In general applications, a simple well known model, first derived by Ohnaka [13], Eq. (18), is sufficient to calculate this back-diffusion parameter. In the specific case of prescribed parbolic growth in an alloy with an extended primary phase, however, a modified expression for , suggested by Voller [11], Eqs. (16-17), offers an improved performance.  
There are two key areas where microsegregation models intended for use in micro-macro modeling of solidification process need to be improved. 

1. The models presented here do not account for dissolution or re-melting. Such an account will require the tracking of the solute profile through time. This can be easily achieved in a numerical model, where the profile is recorded in the nodal values. In approximate approaches however, the solid solute is handled in a “lumped” fashion and exact details of its profile are not known. Further work is required to arrive at a treatment of dissolution and
Figure 3: Eutectic fractions, under constant cooling, for a selection of and  values
[image: image42.bmp][image: image43.wmf]

re-melting that matches the level of approximation used in the microsegregation models presented here.  
2. In most current approximate microsegregation models, back-diffusion is only treated during primary solidification. Usually, when second phases form a default setting of zero back-diffusion is assumed. Once again further work is required to determine how back-diffusion during the precipitation of secondary phases can be incorporated into the existing approximate microsegregation models.      

All in all, in the current sate of play, despite its poor performance at very low liquid fractions under the condition of parabolic solid growth, (see Fig. 2), this author favors use of the parameter back-diffusion model using the Ohnaka [13] approximation for  Eq. (18). This model produces very sound results across a wide range of typical casting conditions, can easily incorporate morphology changes, and has been shown to be compatible with a general a micro-macro modeling of a multi-component solidification model [4, 18]
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Figure 4: Segregation ratio on complete solidification for a selection of and  values
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